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R
NA is an attractive molecule class for
the design of nanoscale structures
that potentially possess multiple bio-

chemical functions. RNA-based molecular
complexes have been designed to form
shapes resembling squares,1�4 cubes,5,6 an
antiprism,7 multimeric rings,8�10 and a tri-
star.11 It is highly desirable to have compu-
tational tools that aid the structure predic-
tion and design of such multistrand RNA
complexes. The secondary structure predic-
tion problem considered here is to compu-
tationally predict the base pairing of one or
several RNA strands such that the predicted
structure coincides with the experimentally
determined base pairing. We are particu-
larly interested in developing a computa-
tional method for the fast and accurate
prediction of multistrand RNA nanostruc-
tures (tectoRNA).1,12,13

An example of amultistrand RNA second-
ary structure is shown in Figure 1. In a
circular diagram (Figure 1, right) sequences
are laid out in a clockwise direction along
the circumference of the circle: base pairs or
helices are represented as arcs; non-nested
base pairs correspond to “crossing arcs”. We
also call RNA secondary structures with non-
nested base pairs pseudoknotted. The com-
putational prediction of RNA secondary
structures is greatly simplified if RNA sec-
ondary structures are assumed to consist of
only base pairs that are nested. In this case it
is possible to find the minimum free energy
(MFE) structure with the help of recursion
relationships that can be computationally
solved with the use of dynamic program-
ming algorithms.14�16 Much of the recent
work in this field has focused on considering
subclasses of pseudoknots such that the
minimum free energy structure can be
found efficiently.17�19 On the other hand,
it has been mathematically proven that

finding theminimum free energy RNA struc-
ture among the set of all (including non-
nested) RNA secondary structures is equi-
valent to a class of problems for which
no algorithm with polynomial complexity
has yet been found.20,21 For this case of
unrestricted pseudoknot complexity, it will
be desirable to develop heuristic algorithms
(such as the one described in this paper) for
the “search component” of RNA secondary
structure prediction methods that are com-
putationally efficient with the drawback that
the solutions are not guaranteed to corre-
spond to theminimum free energy structure.
Most current RNA secondary structure

prediction methods use a physics-based en-
ergy model that is derived from a nearest-
neighbor base pair stacking model.16,22,23
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ABSTRACT

We are presenting NanoFolder, a method for the prediction of the base pairing of potentially

pseudoknotted multistrand RNA nanostructures. We show that the method outperforms

several other structure prediction methods when applied to RNA complexes with non-nested

base pairs. We extended this secondary structure prediction capability to allow RNA sequence

design. Using native PAGE, we experimentally confirm that four in silico designed RNA strands

corresponding to a triangular RNA structure form the expected stable complex.

KEYWORDS: pseudoknot . RNA . secondary structure prediction . sequence
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Machine-learning techniques have, however, also
been applied successfully to single-strand RNA sec-
ondary structure prediction aswell as to the problemof
predicting RNA secondary structure from a set of
aligned homologous sequences.24�26

Methods for predicting the intra- and interstrand
base pairing of not more than two RNA strands are
available in the form of the RNAcofold program and
the Pairfold program.27,28 Computational tools for the
secondary structure prediction of three or more se-
quences were notably absent until recently. Programs
that are able to predict secondary structures of multi-
ple RNA sequences are Multifold and NUPACK.18,29 The
NUPACK software considers pseudoknots for single
RNA strands (the search space consists of all secondary
structures that can be decomposed into two pseudo-
knot-free structures). This pseudoknot prediction cap-
ability is, however, currently not available for the
prediction of two or more RNA strands. The inherent
problem with not considering pseudoknotted struc-
tures (structures with non-nested base pairs) is shown
for the example of an RNA square (see Figure 1): the
base pairing that corresponds to the correct secondary
structure is highly non-nested. For dynamic program-
ming algorithms that do not consider pseudoknots (or
only a subclass of pseudoknots), this can lead to the
situation that the native secondary structure is not part
of the search space and cannot be identified. This is the
key motivation for the work presented here: the Na-
noFolder approach uses a very simple energy model,
but has no restrictions on pseudoknot complexity.
The ability to predict RNA base pairing from a given

sequence prompts the problem of sequence design:
given a desired RNA base pairing, what should the
sequence of the RNA strands be? Several programs

have been described that generate a novel sequence for
a given pseudoknot-free single-strand RNA secondary
structure. The RNAinverse program uses a Monte Carlo
search in sequence space combined with dynamic pro-
gramming that takes advantage of the fact that for a
mutated sequencemanyenergy terms fromtheprevious
sequence have not changed.16 RNA-SSD performs a
stochastic local search of near-optimal substructures in
order to find a sequence whose predicted secondary
structurematches the target secondary structure as close
as possible.30,31 Busch and Backofen described the pro-
gram INFO-RNA.32,33 It uses dynamic programming to
generate an initial sequence. The initial sequence is
further optimized with a local stochastic search using
structural decomposition for fast energy computation
and a look-ahead for the determination of favorable next
mutation steps. The NUPACK package performs se-
quence optimization byminimizing the ensemble defect
(the ensemble-averaged number of incorrectly paired
nucleotides of the RNA or DNA complex).18,34

This paper is organized as follows: First, our ap-
proaches for the prediction as well as the design of
pseudoknotted, multistrand RNA complexes are pre-
sented. We then evaluate the performance of the
structure prediction approach using a test set of
published RNA complexes. To demonstrate the viabi-
lity of the RNA design approach, we lay out the steps
involved in the design of a four-strand RNA triangular
structure. Using native PAGE, we then verify experi-
mentally that the in silico-designed RNA sequences
form the desired complex.

RESULTS

Quality of Structure Prediction. We used several pub-
lished RNA structures that consist of three or more

Figure 1. The internal representation of multistrand secondary structures corresponds to non-nested base pairings. Left:
schematic of one of the four-strand RNA square designs (also called tectosquare).1 Right: Equivalent circular plot of the
computer-internal representation of the RNA square. Helices are represented as arcs. Non-nested base pairs correspond to
crossing of arcs. A more detailed version of the circular representation of the RNA square is part of the screenshot shown in
Figure 5. The left part of the figure has been reprinted from Methods, 54(2), Kasprzak et al.: Use of RNA structure flexibility
data in nanostructure modeling, pp 239�250, copyright 2011, with permission from Elsevier.43
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strands as a test set to evaluate the quality of the RNA
secondary structure predictions generated by Nano-
Folder. As a measure of how well the reference n � n

base pair matrix is predicted (with n being the total
number of residues in the RNA strands) we use the
Matthews correlation coefficient (Materials and
Methods). Note that MCC values can range between
1 and �1. An MCC of 1 corresponds to a “perfect
prediction” (i.e., the predicted outcomes (base pairs)
coincide with the correct result); an MCC of 0 corre-
sponds to a random prediction with no correlation
between prediction and the correct solution.

In Figure 2 we plot the Matthews correlation coeffi-
cient, comparing the programs NanoFolder and NU-
PACK. As one can see in the box-whisker plot, the
median Matthews correlation coefficient (MCC) of the
NanoFolder predictions is higher compared to NUPACK.

We also analyzed the performance of the program
using a data set of 18 RNA heteroduplexes. We com-
pared the prediction quality of the programs Nano-
Folder, NUPACK (program pairs), RNAcofold, and Pair-
fold.18,27,28 Figure 3 shows a box-whisker plot of the

different approaches. Results for RNAs corresponding
to the eight non-nested secondary structures are
shown on the left; results for RNAs corresponding to
the 10 nested secondary structures are shown on the
right. One can see that for non-nested RNA duplexes
NanoFolder has the highest median prediction quality
(MCC) compared to the other approaches; for RNA
duplexes with nested base pairings (essentially helices
possibly containing bulges and internal loops) the
median prediction quality of NanoFolder is lower
compared to the other approaches.

The run times of the NanoFolder program are
shown in Table 1. The RNA square (368 residues) is
computed in about 0.4 s; the RNA antiprism complex
with 1008 residues is computed in less than 3 s.
This suggests that the structure prediction algorithm
is sufficiently fast to be useful in many practical
situations.

Figure 2. Box-whisker plot of achieved prediction qualities
(Matthews correlation coefficients) for different methods
applied to the set consisting of the nine multistrand RNA
structures listed in Table 1. Each box-whisker element
depicts the first quartile, median, and third quartile in the
form of a colored box; minimum and maximum scores are
depicted as “whiskers” (vertical lines emanating from the
colored box element). No data elements were considered
“outliers”. The method NanoFolderJK corresponds to the
leave-one-out (jack-knife) approach of training and testing
the interstrand interaction penalty parameter. For the
method indicated as NanoFolder, this parameter was set
to the median of the training results achieved in the jack-
knife method.

Figure 3. Box-whisker plot of achieved prediction qualities (Matthews correlation coefficients) for different methods applied
to a test set consisting of 18 RNA heteroduplexes (Materials and Methods). Each box-whisker element depicts the first
quartile, median, and third quartile in the form of a colored box; minimum and maximum scores are depicted as “whiskers”
(vertical lines emanating from the colored box element). No data elements were considered “outliers”. Left: accuracies of
structure predictions corresponding to a data set of duplex structures with non-nested base pairs. Right: accuracies of
structure predictions corresponding to a data set of duplex structures not containing non-nested base pairs.

TABLE 1. Prediction Results for RNA Structures with Three

or More Strandsa

name ref strands residues NanoFolderJK NanoFolder pairs time (s)

hairpin riboz.
(2P7F)

44 4 60 0.82 0.82 0.56 0.053

nanosquare
(3P59)

2 4 100 0.40 0.36 0.08 0.052

antiprism
(lower half)

6 4 504 0.74 0.75 0.69 0.617

antiprism
(upper half)

6 4 504 0.78 0.73 0.62 0.654

RNA square 1 4 368 0.97 0.97 0.36 0.425
hexameric ring 8 6 264 0.33 0.63 0.10 0.199
antiprism 6 8 1008 0.78 0.78 0.63 2.913
six-stranded
cube

4 6 288 1.00 1.00 0.53 0.233

10-stranded
cube

4 10 332 0.94 0.94 0.57 0.252

a Strands: number of input RNA sequences; ref: literature reference; residues: total
number of nucleotides; NanoFolerJK: NanoFolder results (Matthews correlation
coefficient, MCC) using jack-knifing (such that current structure was not used during
training); pairs results (MCC) from the NUPACK pairs program; NanoFolder: results
(MCC) of NanoFolder using standard parameters. Time: run-time of the NanoFolder
program (in seconds), evaluated using a Linux PC with a 3.0 GHz Intel Xeon processor.
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To demonstrate the utility of the design approach,
we designed de novo an RNA nanoscale structure that
forms a triangular shape and consists of four RNA
strands (see Figure 4, top right and bottom right).
The three corners of the triangular structure are formed
by one type of three-way junction motif that was
identified with the help of the RNAJunction database
and the NanoTiler software.35,36 The sequence segments
corresponding to the corner motif as well as the 50 ends
were not modified during the sequence optimization;
those residues are indicated in lower case in the se-
quences reported in the Materials and Methods section.

The formation of a four-strand RNA complex was
experimentally verified using nondenaturing polyacry-
lamide gel electrophoresis (native-PAGE). This electro-
phoretic separation technique is widely used for
characterizations of RNA assemblies (Afonin, et al.
Nat. Protoc. 2011). Major dark bands on the gel corre-
spond to the products of the assemblies (see Figure 4,
left). Assembled four-strand RNA complexes are ex-
pected to migrate as a single band with the lowest
mobility. Native-PAGE results presented in Figure 4
demonstrate the reproducible self-assembly of four
(A�D) RNA strands, into the definite structure of a
tetramer. Quantification of the bands reveals that the
average yield of the RNA tetramer is greater than 90%.
To verify that all four RNA strands participate in self-
assembly, each of the four radiolabeled molecules
(marked with “*”) was individually mixed with three
other nonlabeled molecules followed by the assembly
protocol described in the Methods section. The results
show identical gel shifts for all four tetramers with
different labeled strands, suggesting the participation
of all strands in the formation of the closed species.

Web Server. We implemented a publically available
Web server in order to provide a user-friendly interface
for the structure prediction and sequence design
methodology. Input for the secondary structure pre-
diction is a set of RNA sequences in FASTA format.
Figure 5 shows a screenshot of a secondary structure
prediction result that one obtains after submitting four
RNA sequences that correspond to the RNA square.1

The predicted base pairing is shown on the result page
in three different text formats as well as an image
depicting a circular diagram.

Input to the sequence designmethod is a set of RNA
sequences combined with a descriptor for the desired
target secondary structure (input format examples are
given on the Web page). Nucleotides that are repre-
sented as uppercase (lowercase) characters in the user-
defined starting sequences will (not) be modified
during sequence randomization and optimization, re-
spectively. This effectively makes possible partial se-
quence optimization that can be useful for optimizing
a set of sequence in stages as well as for keeping
structural motifs unchanged. The user also can specify
the number of iterations corresponding to the two
stages of optimization. The URL of the Web server is
http://matchfold.abcc.ncifcrf.gov/.

DISCUSSION

The secondary structure prediction algorithm of
NanoFolder is strikingly simple: it proceeds by placing
in a “greedy” fashion RNA helices in the order of their
estimated free energy. This approach has the advan-
tage that it is fast and that it is unrestricted in terms of
pseudoknot complexity. Indeed, to the best of our knowl-
edge, NanoFolder is currently the only computational

Figure 4. Right:molecularmodel of four-strand triangular RNAnanoscale structure. Shown is also the three-way junction that
was obtained from the RNAJunction database (RNAJunction database accession ID 11836). Each of the 3 “corners” of the
designed triangular structure contains this three-way junction(3WJ)motif. Left: Native PAGE results for different strand
combinations.
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Figure 5. Screenshot of a secondary structure prediction result generated by the NanoFolder Web server. The RNA sequences
usedas “input” for theWebserver (labeled in the screenshotas “Sequence”) correspond toanRNAsquare.1TheWebserver returns
structure prediction results in three different text output formats (labeled in the screenshot as “Predicted secondary structure”,
“Bracket notation of concatenated sequence”, and “CT notation of concatenated sequence”). The predicted base pairing is
depicted using a circular representation (labeled in the screenshot as “Circle diagram of predicted secondary structure”). The
bottom part of the generated Web page (containing the prediction result in tabular “CT” file format) is not shown in its entirety.
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method that considers non-nested base pairings for
multistrand secondary structure predictions. The com-
putational multistrand predictions rely on the step of
appending the multiple strands in a linear fashion, keep-
ing track of the discontinuities between sequences.18,27,29

A circular representation reveals that this procedure
effectively turns the multistrand structure prediction pro-
blem into a single-sequence structure prediction
problem with pseudoknots (see Figures 1 and 5). Only
allowing a subclass of pseudoknots or not allowing
pseudoknots at all potentially prohibits the target sec-
ondary structure from being part of the solution set.
A sequence design algorithm with that restriction will
then have to rely on a structure prediction methodo-
logy that considers only partially folded or misfolded
structures.
The relative importance of considering pseudoknots

versus the sophistication of the energymodel becomes
particularly apparent when considering the structure
prediction results shown in Figure 3. The plot depicts
structure prediction results of the various approaches
(NanoFolder, NUPACK, RNAcofold, Pairfold) to a set of
RNA heteroduplexes. When applied to a data set of
RNA duplexes with non-nested base pairs (Figure 3
left), NanoFolder outperforms the othermethods, even
though its energy model is much simpler. When
applied to the data set of RNA duplexes not containing
non-nested base pairs (Figure 3 right), NanoFolder
predictions are less accurate compared to the other

methods. This is likely due to the simple energy model
(essentially consisting of only two terms) employed by
NanoFolder. Also apparent from Figure 3 is that the
structure prediction results of the three programs
NUPACK, RNAcofold, and Pairfold are similar in quality.
This is likely due to the similarity in the search algorithms
(dynamic programming) andenergymodels. Itwouldbe
desirable to develop amultistrand RNA secondary struc-
ture prediction algorithm that is based on the energy
model of the aforementioned programs and yet has no
restriction in terms of pseudoknot complexity.
This also suggests that designed architectonic RNAs

possess different properties compared to natural RNAs.
The key for tectoRNAs is robustness of folding (often
implemented by using relatively long helices). Indeed,
in the field of DNA nanoscale structure design, im-
pressively complex DNA structures have been de-
signed and experimentally verified using a set of
heuristic rules without ever attempting a full minimum
free energy DNA secondary structure prediction.
The NanoFolder design algorithm is specifically

geared toward the design of tectoRNAs. It is a combi-
nation of RNA secondary structure prediction and
sequence design rules. The demonstrated high sec-
ondary structure prediction accuracy combined with
the shown experimental (native PAGE) confirmation of
a designed RNA triangular structure makes us confi-
dent that NanoFolder is an important addition to the
toolkit of an RNA nanostructure designer.

MATERIALS AND METHODS

RNA Structure Data Sets. We developed two data sets for
training and testing the multistrand RNA secondary structure
prediction algorithm. Eighteen RNA structures consisting of two
RNA strands with nonidentical sequences (heteroduplexes)
were obtained from the PDB databank. Their PDB accession
codes are for nested structures 1NTA, 2D1A, 2G5K, 2OE5, 2OEU,
2PN3, 2XEB, 3BNP, 3CJZ, and 429D; for non-nested structures
the accession codes are 1BJ2, 1F27, 1YKQ, 2GCS, 2JLT, 2P89,
2PCW, and 3MJ3. We call this data set the heteroduplex set.
Another data set (called the multistrand data set) consisting of
nine RNA structures (each possessing three or more RNA
strands) was generated using the Protein Data Bank as well as
the available literature. These structures and their literature
references are listed in Table 1.

Multistrand Structure Prediction Including Pseudoknots. A new
program called NanoFolder performs the multistrand RNA
secondary structure prediction. The main characteristics of the
implementation are fast execution times aswell as no restriction
in terms of pseudoknot complexity. The RNA secondary struc-
ture scoring function and the search algorithm used by Nano-
Folder are described below.

Scoring of RNA Structures. The free energy contribution of
an RNA double-helix is estimated using the sum of its base-pair
stacking energies from a standard nearest neighbor energy
model22 as well as an interstrand penalty term that is zero for
intrastrand helices and greater than zero for interstrand helices.
Instead of using a physical model with parameters that are
unknown or hard to measure, the value of the interstrand
penalty term is determined using a training set (the interstrand
penalty can be viewed as an entropic penalty). Training has

been performed in a jack-knife manner using the results
corresponding to the nine RNA structures reported in Table 1.
In other words, for each predicted RNA structure, the trained
value of the interstrand penalty has been determined using the
remaining eight RNA structures. For a given “test RNA”, the
search for the optimal interstrand penalty was an exhaustive
enumeration of values between 0.0 and 2.0 kcal/mol in steps of
0.2 kcal/mol. The interstrand penalty that led to the highest
prediction accuracy of the training set was then applied to the
prediction of the one RNA of the test set. This procedure was
repeated nine times, corresponding to the nine RNAs of the set
shown in Table 1. The median of the nine chosen interstrand
penalties was found to be 1.0 kcal/mol. This approach should be
viewed as an empirical scoring function for RNA complexes
rather than a physical energy function.

RNA Folding Algorithm. The structure prediction algorithm
proceeds as follows: first, an exhaustive list of all possible helices
consisting of two or more base pairs is generated. Each helix is
scored as described in the previous section. To predict an RNA
secondary structure, an RNA is folded in silico by placing the
helices in ascending order of their scores, such that a newly
placed helix is not overlapping with previously placed helices. If
several unplaced helices have the same score contribution, a
random choice is made to place one of them. The algorithm
terminates when there are no helices in the original helix list
that have not been placed yet and that do not overlap with
already placed helices.

RNA Sequence Design Algorithm. The sequence design algo-
rithm has the task of generating a set of RNA sequences that
fold into a secondary structure that is as close as possible to the
folding pattern envisioned by the designer. In addition, there
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are “rules” that the designed sequences should obey. This lays
out the general strategy for sequence design: Given an initial set
of RNA sequences, the sequences are computationallymutated.
Each set of RNA strands is scored using an objective function,
which reflects how “good” the current set of sequences is. Using
a Monte Carlo algorithm, the mutations of the sequences are
accepted or rejected using a Metropolis criterion that depends
on the difference in the values of the objective function as a
consequence of the current mutation. The objective function
consists of two components: a secondary structure similarity
component and a sequence design rule component. Both terms
are described in more detail in the following two sections.

Secondary Structure Similarity Component. This score com-
ponent reflects the similarity of the predicted multistrand
secondary structure and the desired target secondary structure.
For the design of thermodynamically stable scaffold sequences,
one wants the designed sequences to exhibit “robust” RNA
folding. One can express this concept using an n � n matrix
(with n being the total number of residues in all RNA strands)
containing probabilities of base pairing between different
residues. The desired secondary structure corresponds to a
base pair probability matrix containing matrix elements that
have a value of 1 for desired base pairs and a value of 0 for
undesired base pairs. This idealized probability of base pairing is
then compared to the predicted base pair probability matrix.
The more similar the predicted base pair probability matrix is to
the idealized base pair probability matrix, the better the se-
quence design.

The base pair probability matrix is computed as follows: For
a set of multistrand RNA strands a secondary structure predic-
tion is rerun 20 times, each time adding a Boltzmann-weighted
noise term to the energy contribution of each helix that is part of
the initial exhaustive list of all possible helices. This leads to a set
of 20 predicted secondary structures. The average occupancy of
each base pair is used to generate an estimated base pair
probability matrix.

From the base pair probability matrix P, the reference
secondary structure s, the total number of residues n, a similarity
score d(P,s) is computed as follows:

d(P, s) ¼ ∑
n

i¼ 1
di(P, s)

with

di(P, s) ¼
1 � P(i, B(i, s)), if S(i) ¼ 1

∑
n

j¼ 1
P(i, j), if S(i) ¼ 0

8<
:

The function S(i) is defined to be 1 if reference residue i
participates in any base pairing and 0 otherwise. The function
B(i,s) is defined to be equal to the index of the residue that
participates in base pairing with residue i.

Sequence Design Rule Component. This score component
reflects how well the designed RNA sequences “obey” a set of
sequence design rules. Several design rules can be formulated
using the concept of same-length sequence fragments called
“critons”: From a sequence of lengthN one cangenerateN� Lþ
1 contiguous sequence fragments (critons) of length L. We
choose the length L of the considered critons to be 6nt. Rules
based on the concept of critons have been applied with great
success to the design of DNA nanostructures.37,38 Each “rule
violation” is computationally modeled as a penalty term. For
example, branch migration is a property that is usually not
desired in designed nucleotide sequences, because it poten-
tially leads to a variety of structurally and energetically similar
folds. In order to bias designed RNA sequences to not exhibit
branch migration, a branch migration penalty term is set equal
to the number of RNA double-helix ends that might contribute
to branch migration. A subset of the employed set of rules has
previously been used for the design of cubic RNA complexes.4

Here we present a list of the employed penalty scoring
terms for the sequence design: 1) auViolation�Let k be the
number of helical AU regions (sequence regions that consist
only of nucleotides A or U and correspond to nucleotides that
are per design desired to participate in base pairing) with a

length of three ormore nucleotides. The penalty term is defined
as sAU = ∑i = 1

k (li� 2) with li being the length of the ith such AU
region. The rationale for this term is to avoid designed helices
that possess regions with too many consecutive A-U base pairs,
which could result in helical regions with limited stability.
2) branchMigration�Count of the number of helix ends in
the target secondary structure that could participate in branch
migration. Let i,j be the indices of two residues that are base-
paired in the target structure. If residue pair iþ1, j�1 (or iþ1,
j�1) is not part of the target secondary structure but is
Watson�Crick complementary, the branch-migration counter
is increased by one. The rationale for this term is to promote a
unique native structure (being equal to the target design
structure) without having energetically similar structures corre-
sponding to migrated junctions or partially opened helices.
3) complement�Count of the number of critons for which a
reverse-complement criton exists that is not desired to base pair
according to the target structure. The key idea of “critons” is that
each criton cannot form complete duplexes with any other
criton forming base pairs that are not part of the target
structure; 4) consecutive�Count of the number of adjacent G
or non-G nucleotides of the same kind that exceed two or three,
respectively. A large number of adjacent nucleotides of the
same type is not desirable, because it can potentially lead to a
large set of structurally and energetically similar RNA folds.
5) duplicate�Count of the number of nonunique critons. If we
denote the total number of generated critons from the input
sequence(s) as nc, and the number of unique sequence frag-
ments obtained from these critons as nu, we can express the
scoring term as equal to nc � nu. Developing nonredundant
sequences is the central idea of nucleic acid sequence design
and dates back to the work of Ned Seeman.38 Duplicate critons
can lead to ambiguities in the RNA folding process, potentially
leading to a riboswitch-like structure; 6) gcFracViolation�If the
target secondary structure consists of k helices, there are 2k
helical strands in the target structure. Let cGCmin(i) = ºfgcliß be the
minimum number of desired G or C bases in the ith helical
strand (li indicates the length of the ith helical strand, the
constant fgc is set to 0.76, the square brackets indicate rounding
to the nearest lower integer). Let cGC(i) be the count of the
number of G or C nucleotides in the ith helical strand. The score
is defined as

sGCfrac ¼ ∑
2k

i¼ 1

cGCmin(i) � cGC(i), if cGCmin(i) > cGC(i)
0 otherwise

�

The rationale of this term is to promote a high GþC content
in helices; 7) gcViolation�Let k be the number of helical GC
regions (sequence regions that consist only of nucleotides G or
C and correspond to nucleotides that are per design desired to
participate in base pairing) with a length of two ormore nucleo-
tides. The penalty term is defined as sGC = ∑i = 1

k (li � 1) with li
being the length of the ith GC region. The rationale for this term
is to avoid helical regions that correspond to a long stretch of
only GC base pairs; 8) selfComplement�Count of the number
of critons that are self-complementary. Self-complementary
regions are not desirable because they can potentially lead
to the formation of unwanted hairpin structures; 9) small-
Complement�Count of the number of small critons (length
4) that cannot bematched with a reverse-complementary small
criton. This term promotes the formation of some base pairing
in order to avoid completely unstructured RNA strands. This is
useful to allow slightly structured regions, which are presum-
ably more stable compared to completely unfolded structures
with regard to nuclease degradation; 10) zipper�Count of the
number of nonG-C base pairs at helix ends. The rationale for this
term is to favor folded RNA structures whose helices are not
“breathing” (temporarily partially unfolding) but are terminated
by thermodynamically stable G-C base pairs.

The weights of the scoring terms have not been optimized;
the weight of each scoring term is 1.0 with the exception of the
smallComplement term. This term has aweight of 0.1 because it
addresses a design goal (stability with respect to nuclease
degradation) of lower priority.

Sequence Optimization Algorithm. The task of the sequence
optimization algorithm is to identify a set of RNA sequences that
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correspond to a low design penalty score. The algorithm
consists of three stages:

In the first stage, the RNA sequences are randomized; that is,
the nucleotides of the RNA sequences are randomly chosen.
The randomization is performed such that nucleotides that are
designed to form base pairs are Watson�Crick complementary.
The probabilities of choosing the bases A, C, G, andU are 0.2, 0.3,
0.3, and 0.2, respectively, corresponding to a GþC content of
60%. It is possible to define constant sequence regions that are
not modified by the sequence optimization algorithm. This
computational stage is finished once the initial identity of all
residues has been specified.

In the second stage, the sequences are iteratively modified
using a Monte Carlo algorithm combined with a Metropolis
criterion (this approach is also called stochastic tunneling).39

Nucleotides that correspond to lowercase characters in the
input sequence data are not modified during the optimization.
The objective function of this optimization stage is the rule-
based score component (the sum of the terms listed in the
section Sequence design rule component). This computational
stage is finished after a user-defined number of iterations
(default: 10 000 iterations).

In the third stage, the set of RNA sequences are further
optimized (using the same Monte Carlo algorithm) using as an
objective function that is the sum of the rule-based score
component and the secondary structure similarity component.
This computational stage is finished after a user-defined num-
ber of iterations (default: 1000 iterations).

The user can set the number of iterations of the second and
third stage. This three-stage approach of generating optimized

sequences is rerun five times, and the set of RNA sequences that
corresponds to the lowest objective function score is returned
as a result.

Secondary Structure Prediction Programs Used for Comparison
NUPACK. The NUPACK program Pairs (part of NUPACK soft-

ware version 3.0) was used with the option �multi for multi-
strand secondary structure prediction.18

RNAcofold. The RNAcofold program (part of the Vienna
package 1.7.2) was used with default parameters.27

Pairfold. The Pairfold program of the MultiRNAFold pack-
age (version 2.0) was used with default parameters.28

Matthews Correlation Coefficient As a Measure of Prediction Quality.
The Matthews correlation coefficient is widely used to compare
the performance of binary classifiers.40 For a set of RNA strands
(with a total number ofn residues), amultistrand RNA secondary
structure can be represented by a n � n matrix (“base pair
matrix”) that has matrix elements that are 1 for residues that are
base-paired and 0 otherwise. To compute the MCC for a
predicted secondary structure, we compute the base pairmatrix
corresponding to the predicted secondary structure and the
reference secondary structure. Each element of the predicted
base pairmatrix corresponds to one of four cases, depending on
whether it is a true positive, false positive, false negative, or true
negative prediction. From the four numbers (true positives (TP),
false positives (FP, the total number), true negative (TN), false
negatives (FN)), the Matthews correlation coefficient is com-
puted using the equation

MCC ¼ TP�TN � FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPþ FP)(TPþ FN)(TNþ FP)(TNþ FN)

p

EXPERIMENTAL PROCEDURES
As described in the Results section, a triangular RNA structure

consisting of four strands was experimentally tested for com-
plex formation in order to test the viability of the sequence
design approach. The experimental steps are described in detail
in this section.

RNA Preparation. Synthetic DNA molecules coding for the
antisense sequence of the designed RNA were purchased from
IDT DNA and amplified by PCR using primers containing the T7
RNA polymerase promoter. PCR products were purified using
the QiaQuick PCR purification kit, and RNA molecules were
prepared enzymatically by in vitro transcription using T7 RNA
polymerase. Samples were incubated at 37 �C for four hours in a
buffer containing 15 mM MgCl2, 2 mM spermidine, 50 mM Tris
buffer (pH 7.5), 2.5 mM NTPs, 10 mM DTT, 0.1 μg/μL IPP, and
0.8 u/μL RNasin; the reaction was quenched by adding 5 μL of
RQ1 RNase-free DNase (10 u/μg) for a reaction volume of 200 μL,
followed by 30 additional minutes of incubation. Samples were
purified on adenaturing urea gel (PAGE) (8% or 10%acrylamide,
8 M urea). The RNA was eluted from gel slices overnight at 4 �C
into buffer containing 300 mM NaCl, 10 mM Tris pH 7.5, and
0.5 mM EDTA. After precipitating the RNA in two volumes of
100% ethanol, samples were rinsed twice with 75% ethanol,
vacuum-dried, and dissolved in TE buffer.41,42

Co-transcriptional r[P32]-ATP Body Labeling of RNA Molecules. DNA
templates (containing the T7 RNA polymerase promoter) were
added to the transcription mixture (diH2O, 50 mM Tris pH 7.5,
10 mM MgCl2, 2 mM spermidine, 2.5 mM NTPs, 10 mM DTT)
containing R[32P]-ATP (10mCi/mL) for body labeling. Transcrip-
tion was initiated with the addition of T7 RNA polymerase and
stopped after 4 h with RQ1 RNase-free DNase. Labeled material
was purified as described above.

Nondenaturing PAGE Experiments. All assembly experiments
reported in this study were analyzed on 8% (19:1) nondenatur-
ing polyacrylamide native gels containing 2 mM Mg(OAc)2 and
50 mM KCl and run at 4 �C with running buffer (89 mM Tris-
borate, pH 8.3/15 or 2mMMg(OAc)2). Prior to the addition of the
buffer andMg(OAc)2, the RNA samples containing cognate RNA
molecules at concentrations of 3 μM were heated to 90 �C for

3 min and immediately snap cooled at 25 �C followed by as-
sembly buffer addition (tris-borate buffer (89mM, pH 8.3), 2mM
Mg(OAc)2) and incubation for 20 min. An equal volume of load-
ing buffer (same buffer with 0.01% bromphenol blue, 0.01%
xylene cyanol, 50% glycerol) was added to each sample before
loading on the native gel. Gels were run for 4 h, at 25Wwith the
temperature set to below 10 �C, dried under vacuum, exposed
to a phosphoimager screen for 16 h, and scanned using a Storm
860 phosphoimager. Band quantification was performed using
commercially available ImageQuant software. Equally sized
boxes were drawn around the bands corresponding to the
assembled RNA complexes. The yields of RNA complexes were
calculated by dividing their corresponding quantified values by
the total sumof the values for all other complexes present in the
corresponding lane.

RNA Sequences Used in This Example. The RNA sequences used
are listed below. Nucleotides that underwent sequence optimi-
zation are shown in upper case; the remaining nucleotides
(shown in lower case) correspond to either the chosen three-
way junction motif or the starting sequence motifs.

A: gggaaAUGACUCUcgucagGACACUCUCcgucagCUCUGU
GUGcgucagAGUCG
B: ggaaGUCACGGUCUCgacgacgAGAGCGACUcgcaaccACA
CUGGUGAC
C: ggaaCAGUGUgacgacgCACACAGAGcgcaaccCACUGC
D: ggaaGCAGUGgacgacgGAGAGUGUCcgcaaccGAGACC

Three-Way Junction Motif. The three-way junction that is used
for the triangular RNA structure (described in the Results
section) was identified using the RNAjunction database, by
searching for a three-way junction that contains an interhelix
angle that is similar to 60� and two interhelix angles similar to
150�.35 This structural element (RNAJunction accession ID
11836) was extracted from the Thermus thermophilus 16S rRNA
structure (PDB: 2J00). The triangular structure was identified
using a combinatorial search performed with the NanoTiler
software.36
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